Programme
Wednesday, October 15th
Université Paris Cité, Building “Sophie Germain”, Amphithéâtre Turing Place Aurélie Nemours, 75013 Paris
9:00 |
Coffee |
9:30-10:45 |
Elaine Landry (University of California Davis), Why the Meno Problem is a Good Mathematical Problem |
10:45-11:15 |
Break |
11:15-12:30 |
Michał Tomasz Godziszewski (University of Łódź), Nonabsoluteness of Satisfaction and Methods of Characterizing Mathematical Truth |
12:30-14:30 |
Lunch Break |
14:30-15:45 |
Marc Lange (Rutgers University), How to Resolve Wigner’s Mystery of the ”Unreasonable Effectiveness of Mathematics’’ in Natural Science |
15:45-16:15 |
Coffee |
16:15-17:30 |
Timothy Gowers (Collège de France and University of Cambridge), What is a Motivated Proof? |
17:45-18:45 |
Meeting of the European Society for the Philosophy of Mathematics
|
Thursday, October 16th
Université Pantheonne-Sorbonne, Centre Panthéon, Room 6 Place du Panthéon 12, 75005 Paris
9:00 |
Coffee |
9:30-10:45 |
Georg Schiemer (University of Vienna), Hilbert’s Program and the Status of Ideal Elements |
10:45-11:15 |
Break |
11:15-12:30 |
Carolin Antos (University of Konstanz), Revolution Despite Continuity: Theory Change and Unification in Mathematics |
12:30-14:30 |
Lunch Break |
14:30-15:45 |
David Waszek (École Normale Supérieure, Paris), From Applications of Mathematics to Mathematical Notations: On Mathematics and Epistemic Accessibility |
15:45-16:15 |
Coffee |
16:15-17:30 |
David Rabouin (Laboratoire SPHère, CNRS, Paris), Leibnizian Abstractionism |
17:45-18:45 |
Meeting of the Réseau Thematique “Philosophie des mathématiques”
|
Friday, October 17th
Université Paris Cité, Building “Olympe de Gouges”, Room 105 Place Paul Ricoeur, 75013 Paris
08:30 |
Coffee |
9:00-10:15 |
Andrea Sereni (IUSS Pavia), Abstraction as explication |
10:15-10:30 |
Break |
10:30-11:45 |
Ludovica Conti (University of Vienna), Impredicativity and Schematic Generality |
11:45-12:00 |
Break |
12:00-13:15 |
Silviu-Constantin Federovici (Alexandru Ioan Cuza University, Romania), Brouwer’s Project to “Root Mathematics in Life” and the Meaning of Experience in His Intuitionism |
|